
CS 4530 Software Engineering

Module 14: Continuous Development Processes

Khoury College of Computer Sciences
© 2023 released under CC BY-SA

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

http://creativecommons.org/licenses/by-sa/4.0/

Learning objectives for this lesson
By the end of this lesson, you should be able to…

• Describe how continuous integration helps to catch errors sooner in the software
lifecycle

• Describe the benefits of a culture of code review
• Describe strategies for performing quality-assurance on software as and after it is

delivered

CD/CI improves code quality and dev velocity

• Perform frequent integrations with entire codebase
• Run integration scale tests frequently
• Deploy frequently and monitor

Module 14.1: Continuous Integration

Agile values fast quality feedback loops
Faster feedback = lower cost to fix bugs

D
ef

ec
t C

os
t

Continuous Integration automates testing
Fast feedback on integration errors

CI automates large test
suites

Continuous Integration
Motivation

• Our systems involve many components, some of which might even be in different
version control repositories

• How does a developer get feedback on their (local) change?

CI is a software pipeline

CI in practice
Small scale, with a service like CircleCI, GitHub Actions or TravisCI

commits code to
Developer

GitHub

TravisCI

checks for updates

Runs build for each
commit

GitHub
ActionsCircleCI

Attributes of effective CI processes
• Do not allow builds to remain broken for a long time
• CI should run for every change
• CI should be fast, providing feedback within minutes

or hours
• CI should not completely replace pre-commit testing

CI In Practice: Autograder

name: 'Build and Test the Grader'
on: # rebuild any PRs and main branch changes
 pull_request:
 push:
 branches:
 - main
 - 'releases/*'

jobs:
 build:
 runs-on: self-hosted
 steps:
 - uses: actions/checkout@v2
 - uses: actions/setup-node@v2
 with:
 node-version: '16'
 - run: |
 npm install
 test:
 runs-on: self-hosted
 strategy:
 matrix:
 submission: [a, b, c, ts-ignore, linting-error, non-green-tests, empty]
 steps:
 - uses: actions/checkout@v2
 - uses: actions/setup-node@v2
 with:
 node-version: '16'
 - uses: ./
 with:
 submission-directory: solutions/${{ matrix.submission }}

test.yml (CI workflow file)
GitHub Actions Results

Example CI Pipeline - TravisCI
At a glance, see history of build

https://travis-ci.com/github/prestodb/presto

https://travis-ci.com/github/prestodb/presto

How do we apply continuous integration?
Testing the right things at the right time

• Do we integrate changes immediately, or do a pre-commit test?
• Which tests do we run when we integrate?
• How do we compose the system under test at each point?

My Social Network App

Cache
Check

Send
response

Build friends
list

Build
Suggestions

Build
Newsfeed

Changed code

Other developers’ changed code

CI Pipelines automate performance testing

https://github.com/neu-
se/CONFETTI/actions

Every commit: Run 10 minute
performance test on 5

benchmarks, repeating each test
5 times (25 concurrent jobs)

On Demand: Run 24 hour
performance test on 5

benchmarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions

CI Pipelines automate benchmarking

On Demand: Run 24 hour
performance test on 5

benchmarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

https://github.com/neu-se/CONFETTI/actions

CI in practice
Large scale example: Google TAP

• 50,000 unique changes per-day, 4 billion test cases per-day
• Pre-submit optimization: run fast tests for each individual change (before code review).

Block merge if they fail.
• Then: run all affected tests; “build cop” monitors and acts immediately to roll-back or fix
• Build cop monitors integration test runs
• Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Module 14.2: Code Review

Code review is an important step of CD
Rough estimate

D
ef

ec
t C

os
t Code Review is a process of

reading and commenting on code

Why should we perform code review?
Code review increases breadth of knowledge of code:

• Other people ”know” the code
• Easier to handle someone cycling off project

Verbalizing decisions improves their quality:
• The process of writing an explanation encourages critical thinking

Code reviews improve quality of code base:
• Knowing code is reviewed pushes devs to make it more presentable and understandable

Many stakeholders can benefit from code review
Reviewers might be…

• An owner of the code being changed or added to
• Someone to verify that the code meets standards.
• Someone to ensure documentation is consistent.
• Other people interested in this code base or experts

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018

Code reviews have many benefits

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013

Code reviews Descend from Code Inspection
Formal process of reading through code as a group;

• Applied to all project documents;
• A 3-5 person team reads the code aloud and explains what is being done;
• Each person has a specific role (moderator, reviewer, reader, scribe, observer, author)
• Usually a 60 minute meeting;
• Less efficient (defects/cost) than modern review processes.
• Very waterfall.
• Traceable, measurable

Code review should be a formal process
A code review is the process in which the code’s author explains it to peers:

• What should it do?
• How does it do it?
• How confident are we in it?
• What are results of running tests?

A code review often concerns a code change (“diff”)

Code review checklist
Consider:

• Am I able to understand the code easily?
• Does the code follow our style guidelines?
• Is the same code duplicated more than once?
• Is this file (or change) too big?
• Does this code meet our non-functional requirements?
• Is this code maintainable?
• Does this code have unintended side-effects?

Code review: How they do it at Google
At Google, reviewers get changes, explanation and all test results: review is
asynchronous.
Elsewhere reviews can be in person:

• More heavyweight, cannot be as common.

Review must be professional and impersonal:
• No one is being “attacked” (or, no one should be).

Don’t rehash design arguments (defer to author).
All suggestions and criticisms must be addressed:

• At least in the negative.

Self-review is no substitute for peer review
Study of 300 reviews at Cisco in 2006

“Best Kept Secrets of Peer Code Review”, Jason Cohen, SmartBear Software, 2006

Even if developers pre-review their code, many defects still found in peer review

Code review: example on pull request

Code reviews and Programmer’s Ego
Remember:

• Code review means someone’s looking over your work
• You might have some attachment to it
• Criticisms: sometimes hard not to take personally
• Acknowledge a criticism and move on
• Acknowledgment doesn’t imply that the author agrees with the content of the criticism
• The review is not about you, the goal is to improve code

Module 14.3: Continuous Deployment

Continuous Delivery
“Faster is safer”: Key values of continuous delivery

• Release frequently, in small batches
• Maintain key performance indicators to evaluate the impact of updates
• Phase roll-outs
• Evaluate business impact of new features

Staging environments
Enabling Continuous Delivery
As software gets more complex with more dependencies, it's impossible to simulate
the whole when testing
Idea: Deploy to a complete production-like environment, but don't have all use it
Examples:

• “Eat your own dogfood”
• Beta/Alpha testers

Lower risk if a problem occurs in staging than in production

Test-Stage-Production
Continuous Delivery in Action

Testing
Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests
Developer

Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

A/B Deployments with Canaries
Mitigating risk in continuous delivery

Monitor both:
But minimize impact of problems in new version

Deployment Philosophy: Instagram
“Faster is safer”

“If stuff blows up it affects a very small
percentage of people”

Instagram cofounder and CTO Mike Krieger

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

Operations Responsibility
DevOps in a slide
Once we deploy, someone has to monitor, make sure it’s running OK, no bugs, etc
Assume 3 environments: Test, Staging, Production
Whose job is it?

Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

StagingTest ProductionProduction

Release Pipelines
How quickly is my change deployed?

• Even if you are deploying every day, you still have some latency
• A new feature I develop today won't be released today
• But, a new feature I develop today can begin the release pipeline today (minimizes risk)
• Release Engineer: gatekeeper who decides when code ready to go out, oversees

deployment process

Deployment Example: Facebook.com
Pre-2016

~1 week of development

3x Daily

Stabilize

release branch

Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out
unless you’re there that day at

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production “When in doubt back out”

Deployment Example
Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

“Our main goal was to make sure that the
new system made people’s experience
better — or at least, didn’t make it worse.
After a year of planning and development,
over the course of three days we enabled
100% of our production web servers to
run code deployed directly from master”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Deployment Example
Post-2016: Truly continuous releases from master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Monitoring helps gather insights
The last step in continuous deployment: track metrics
Hardware

• Voltages, temperatures, fan speeds, component health

OS
• Memory usage, swap usage, disk space, CPU load

Middleware
• Memory, thread/db connection pools, connections, response time

Applications
• Business transactions, conversion rate, status of 3rd party components

Monitoring services aggregate system status

Monitoring services take automated actions

Monitoring services take automated actions
Automatically detecting irregular behavior at Netflix

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

Usability testing in continuous development
A/B Testing

• Ways to test new features for usability, popularity, performance without a focus group
• Show 50% of your site visitors version A, 50% version B, collect metrics on each, decide

which is better

Usability testing in continuous development
A/B Testing: PlanOut from Facebook (“N=109 user study”)

https://github.com/facebook/planout https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Usability testing in continuous development
A/B Testing: PlanOut from Facebook (“N=109 user study”)

https://github.com/facebook/planout https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Beware of Metrics
McNamara Fallacy

• Measure whatever can be easily measured
• Disregard that which cannot be measured easily
• Presume that which cannot be measured easily is not

important
• Presume that which cannot be measured easily does

not exist

Case study of a failed deployment

“In the week before go-live, a Knight engineer manually
deployed the new RLP code in SMARS to its 8 servers.
However, he made a mistake and did not copy the new
code to one of the servers. Knight did not have a second
engineer review the deployment, and neither was there an
automated system to alert anyone to the discrepancy. “

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?
Use capture/replay testing instead of driving market conditions in a test
Avoid including “test” code in production deployments
Automate deployments
Define and monitor risk-based KPIs
Create checklists for responding to incidents

Review
By now, you should be able to…

• Describe how continuous integration helps to catch errors sooner in the software lifecycle
• Describe the benefits of a culture of code review
• Describe strategies for performing quality-assurance on software as and after it is

delivered

	CS 4530 Software Engineering

Module 14: Continuous Development Processes
	Learning objectives for this lesson
	CD/CI improves code quality and dev velocity
	
Module 14.1: Continuous Integration
	Agile values fast quality feedback loops
	Continuous Integration automates testing
	Continuous Integration
	CI is a software pipeline
	CI in practice
	Attributes of effective CI processes
	CI In Practice: Autograder
	Example CI Pipeline - TravisCI
	How do we apply continuous integration?
	CI Pipelines automate performance testing
	CI Pipelines automate benchmarking
	CI in practice
	
Module 14.2: Code Review
	Code review is an important step of CD
	Why should we perform code review?
	Many stakeholders can benefit from code review
	Code reviews have many benefits
	Code reviews Descend from Code Inspection
	Code review should be a formal process
	Code review checklist
	Code review: How they do it at Google
	Self-review is no substitute for peer review
	Code review: example on pull request
	Code reviews and Programmer’s Ego
	Module 14.3: Continuous Deployment
	Continuous Delivery
	Staging environments
	Test-Stage-Production
	A/B Deployments with Canaries
	Deployment Philosophy: Instagram
	Operations Responsibility
	Release Pipelines
	Deployment Example: Facebook.com
	Deployment Example
	Deployment Example
	Monitoring helps gather insights
	Monitoring services aggregate system status
	Monitoring services take automated actions
	Monitoring services take automated actions
	Usability testing in continuous development
	Usability testing in continuous development
	Usability testing in continuous development
	Beware of Metrics
	Case study of a failed deployment
	What could Knight capital have done better?
	Review

