CS 4530 Software Engineering

Module 14: Continuous Development Processes

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

Khoury College of Computer Sciences
© 2023 released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning objectives for this lesson

By the end of this lesson, you should be able to...

» Describe how continuous integration helps to catch errors sooner in the software
lifecycle

 Describe the benefits of a culture of code review

» Describe strategies for performing quality-assurance on software as and after it is
delivered

CD/CI improves code quality and dev velocity

» Perform frequent integrations with entire codebase
* Run integration scale tests frequently
* Deploy frequently and monitor

Build Test

Develop

Deploy Monitor

: : Test
Style Check Integration Test
Load Test

Compile

Unit Test

Prepare
Deployment

Module 14.1: Continuous Integration

Agile values fast quality feedback loops

Faster feedback = lower cost to fix bugs

» Old feedback loop: infrequently

8 New feedback loop: continuously

O

D

O

O

Feedback loops we’ve covered
A
Oo,) O%. O% (oo Oo Oo > (Q ’
® o & S 2 % %, o
%% %,
) O/}O

Continuous Integration automates testing

Fast feedback on integration errors

%
S Cl automates large test
+3 suites
2
O
a
e % D N e e %, <o
% S, 2 Q 2 % %, ©
S % 0 A % A R
”) Q % N O %
¥ (% S 2 7
% %
%) C

Continuous Integration

Motivation

» Our systems involve many components, some of which might even be in different
version control repositories

 How does a developer get feedback on their (local) change?

Our changed code

i

Cache Build Buﬂd Bmld Send
Check friends list Newsfeed Suggestlons response

Other developers’ changed code

CI is a software pipeline

Develop Build

-
: : Test
Style Check Integration Test

Compile Load Test

Unit Test

Deploy Monitor

Prepare
Deployment

Automate this centrally, provide a
central record of results

CI in practice

Small scale, with a service like CircleClI, GitHub Actions or TravisClI

%for updates

CircleCl Gitl.-IUb TravisCI
Actions

GitHub

commits code to

Developer

Runs build for each
commit

Attributes of effective CI processes

Do not allow builds to remain broken for a long time
Cl should run for every change

Cl should be fast, providing feedback within minutes . outputthe fuiltest name
Or hou rS All checks have passed

9 successful checks

CI Shou Id nOt COm pletely replace pre—COm m it teSti ng [v . Build and Test the Grader [build (push) Successfu...

v Check dist/ | check-dist (push) Successful in 30s

v . Build and Test the Grader [test (reference) (push) ...

v . Build and Test the Grader [test (b) (push) Succes...

_+ fmY Riiild and Tact the Cradar | tact (te-innara) (nuch)
1LE 1LE

Details

Details

Details

Details

Nataile

Tools: extract_features.py: correct define name for AP_RPM_ENABLED

’ peterbarker committed 5 days ago X

AP_Mission: prevent use of uninitialised stack data --
’ peterbarker committed 5 days ago X

AP_HAL_ChibiOS: disable DMA on 12C on bdshot boards to free up DMA ch... --

f}z andyp1per authored and tridge committed 6 days ago X

SITL: Fixed rounding lat/Ing issue when running JSBSim SITL --

2 ShivKhanna authored and tridge committed 6 days ago X

AP_HAL_ChibiOS: define skyviper short board names
& yuri-rage authored and tridge committed 6 days ago X

0]

(I 2

CI In Practice: Autograder

test.yml (Cl workflow file)

name: 'Build and Test the Grader'
on: # rebuild any PRs and main branch changes
pull request:
push:
branches:
— maln
- 'releases/*'
jobs:
build:
runs-on: self-hosted
steps:
- uses: actions/checkout@v?2
- uses: actions/setup-node(@v?2

with:
node-version: '16'
- run: |
npm install
test:
runs-on: self-hosted
strategy:
matrix:
submission: [a, b, ¢, ts-i1gnore, linting-error, non-green-tests,
steps:

— uses: actions/checkout@v?2
- uses: actions/setup-node@v?2

with:
node-version: '16'
- uses: ./
with:

empty]

submission-directory: solutions/S${{ matrix.submission }}

GitHub Actions Results

test.yml
on: push

@ build

Matrix: test
@ test (a)
@ test (b)
@ test (c)
@ test (ts-ignore)
@ test (linting-error)
@ test (non-green-tests)

@ test (empty)

30s

3m 6s

3m 3s

2m 58s

bs

31s

35s

4s

Example CI Pipeline - TravisCI

At a glance. see historv of build
prestodb / presto

build ' passing

Current Branches Build History Pull Requests

< master

‘ James Sun

This patch bumps Alluxio dependency to 2.3.0-Z

master

€© Andrii Rosa

Handle query level timeouts in Presto on Spark

master

@ Wwenlei Xie

I < master
]

Check requirements under try-catch

L) Andrii Rosa

< Mmaster

& Maria Basmanova

< master

& Maria Basmanova

Fix flaky test for TestTempStorageSingleStream:

Update TestHiveExternalWorkersQueries to crez

Introduce large dictionary mode in SliceDiction:

-0- #52300 passed
-O- 36392a2 2

-0- #52287 errored

-O- aabbea7 7

-O- #52284 errored
-O- 193a4cd 7

-0- #52283 passed
o fff331f

-0- #52282 passed
-O- 746d7b5 7

-0- #52277 passed
-O0- a90d97a 7

(Y 10 hrs 49 min 31 sec

27

2 days ago

(V) 11 hrs 6 min 44 sec

aT

2 days ago

(Y 11 hrs 50 min 37 sec

27

2 days ago

(Y 11 hrs 3 min 20 sec

27

2 days ago

(Y 10 hrs 55 min 37 sec

27

2 days ago

(Y 10 hrs 43 min 30 sec

27

2 days ago

https://travis-ci.com/qithub/prestodb/presto

More options

https://travis-ci.com/github/prestodb/presto

How do we apply continuous integration?

Testing the right things at the right time
* Do we integrate changes immediately, or do a pre-commit test?
* Which tests do we run when we integrate?
 How do we compose the system under test at each point?

Changed code

l
Cache Build friends Build Build Send
Check list Newsfeed Suggestions response

Other developers’ changed code

CI Pipelines automate performance testing

eval-10m-5x.yml

on: push Matrix: evaluate [run-fuzzer
@ evaluate / build-matrix 5s @ evaluate / run-fuzzer (... 12m 21s @ evaluate [repro-jacoco 5m 5s @ evaluate / build-site 52s

@ evaluate [run-fuzzer... 12m 25s

Every commit: Run 10 minute
performance test on 5

© evaluate | run-fuzzer (... 12m 27s benchwmarks, repeating each test

5 times (2.5 concurrent jobs)

@ evaluate / run-fuzzer... 12m 23s

@ evaluate / run-fuzzer (... 12m 13s
@ evaluate [run-fuzzer... 12m 24s
@ -evaluate / run-fuzzer (... 12m 21s
@ evaluate [run-fuzzer... 12m 23s
@ evaluate / run-fuzzer (... 12m 27s

eval-24h-20x.yml

@ evaluate [run-fuzzer (... 12m 13s

on: workflow_dispatch Matrix: evaluate / run-fuzzer
© evaluate [run-fuzzer ... 12m 24s @ evaluate / build-matrix 2s @ o @ evaluate [run-fuzzer (an... doh @ e @ evaluate [repro-jacoco 13m 52s evaluate / build-site
@ evaluate / run-fuzzer... 12m 25s @ evaluate | run-fuzzer (be... 1d oh
@ evaluate [run-fuzzer... 12m 26s ® evaluate | run-fuzzer (cl... 1d on OV] —D@W\ﬁVld:’RMV] 24 \/]O(/llf
(] | | run-f ... 12m 26s
evaluate frun-fuzzer... 12m 26 @ evaluate [run-fuzzer (m... 1d oh PGV’FOY‘W\&V}O@ +6§+ on 6
benchwmarks, repeativg each test
@ -evaluate / run-fuzzer (rh... 1d oh 20 +1mes (/\OO CONCArrent jOlQS)

0 evaluate [run-fuzzer (an... 1d Oh

https //q |th u b . CO m/ne u- @ -evaluate / run-fuzzer (bc... 1d 0h
Se/CO N F ETT |/aCt|OnS O evaluate [run-fuzzer (cl... 1d oh

N - - e

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions

CI Pipelines automate benchmarking

closure

Branch Probes Over Time

a0000 4 ///

Branch Probes Covered

Download this graph as PDF

Campaign Time (minutes)

T
1000

T
1500

eval-24h-20x.ymi

on: workflow_dispatch Matrix: evaluate [run-fuzzer

@ -evaluate [build-matrix 2s ®

@ evaluate / run-fuzzer (bc...

@ evaluate / run-fuzzer (cl...

@ evaluate [run-fuzzer (m...
@ evaluate [run-fuzzer (rh...
@ evaluate / run-fuzzer (an...

@ evaluate / run-fuzzer (bc...

@ evaluate / run-fuzzer (cl...

S T T S

config

———— ddbdc3

= reporting-ci

https://qithub.com/neu-se/CONFETTI/actions

e @ evaluate [run-fuzzer (an...

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

e @ evaluate [repro-jacoco 13m 52s evaluate /

Owv Pemand: Run 2.4 hour
performance test on 5
benchmarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

CI in practice

Large scale example: Google TAP
* 50,000 unique changes per-day, 4 billion test cases per-day

* Pre-submit optimization: run fast tests for each individual change (before code review).
Block merge if they fall.

* Then: run all affected tests; "build cop”™ monitors and acts immediately to roll-back or fix
» Build cop monitors integration test runs
» Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Module 14.2: Code Review

Code review is an important step of CD

Rough estimate

g Code Review is a process of
O reading and commenting on code
ks
O
A
VS
OO O@ ‘ O@ (O OO % %o (9/
7) L G 2 % o @
C © Q, 5% %, o ¢ S
S 7 O s Z A Cx.
)x 7o) Q /}/ Q //(O
2 % % % Z
2r o oA ?
%

Why should we perform code review?

Code review increases breadth of knowledge of code:

» Other people "know” the code
» Easier to handle someone cycling off project

Verbalizing decisions improves their quality:
* The process of writing an explanation encourages critical thinking

Code reviews improve quality of code base:
* Knowing code is reviewed pushes devs to make it more presentable and understandable

Many stakeholders can benefit from code review

Reviewers might be...

* An owner of the code being changed or added to

« Someone to verify that the code meets standards.
« Someone to ensure documentation is consistent.

» Other people interested in this code base or experts Project lead
Education
Maintaining
Maintaining norms
s norms Gatekeepin
Readability Develo er PTg Other
reviewers p teams
Education _
Maintaining Education |
norms ccident prevention
New team Other team
members members

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018

Code reviews have many benefits

Ranked Motivations From Developers
Top Second Third [N

Finding defects -
Code Improvement]
Alternative Solutions]

Knowledge Transfer

Team Awareness

]
]
Improving Dev Process -
|
||
|

Share Code Ownership

Avoid Build Breaks

Track Rationale

Team Assessment -

I | |
0 200 400 600
Responses
“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013

Code reviews Descend from Code Inspection

Formal process of reading through code as a group;
» Applied to all project documents;
* A 3-5 person team reads the code aloud and explains what is being done;
» Each person has a specific role (moderator, reviewer, reader, scribe, observer, author)
» Usually a 60 minute meeting;
» Less efficient (defects/cost) than modern review processes.
* Very waterfall.
* [Traceable, measurable

Code review should be a formal process

A code review Is the process in which the code’s author explains it to peers:
* What should it do?
 How does it do it?
 How confident are we In it?
* What are results of running tests?

A code review often concerns a code change ("diff")

Code review checklist

Consider:
 Am | able to understand the code easily?
* Does the code follow our style guidelines?
 |s the same code duplicated more than once?
* |s this file (or change) too big?
* Does this code meet our non-functional requirements?
* |s this code maintainable?
* Does this code have unintended side-effects?

Code review: How they do it at Google

At Google, reviewers get changes, explanation and all test results: review is
asynchronous.

Elsewhere reviews can be in person:
* More heavyweight, cannot be as common.

Review must be professional and impersonal:
* No one is being “attacked” (or, no one should be).

Don't rehash design arguments (defer to author).

All suggestions and criticisms must be addressed:
* At least in the negative.

Self-review is no substitute for peer review

Study of 300 reviews at Cisco in 2006

Effect of Author Preparation on Defect Density

s &8 &

S

(=

(e
o

N
()

Average Defect Density (Defects/kLOC)
=

—
—

Without Preparation With Preparation

Even if developers pre-review their code, many defects still found in peer review

“Best Kept Secrets of Peer Code Review”, Jason Cohen, SmartBear Software, 2006

Code review: example on pull request

...re—api/src/main/java/org/apache/maven/surefire/booter/CommandReader. java : Hide resolved

case BYE_ACK:
//After SHUTDOWN no more commands can come. Hence, do NOT go back to blocking in IO
callListeners(command);
return;
default:
callListeners(command);

Tibor17 on Nov 12, 2019 Contributor @ -

The listeners are called here. But we can put IF condition:
IF BYE_ACK — return atthe end of the default case.

Tibor17 on Nov 12, 2019 Contributor @ -

Instead of calling the return we can make softer exit with CommandReader.this.state.set(
TERMINATED) .

eolivelli on Dec 17, 2019 Contributor @ -

Yes, | came to this same conclusion, change the state to TERMINATED.

jon-bell on Dec 19, 2019 Author Contributor @ -
Changed.

Reply...

R
R
4
¢
¢

Unresolve conversation jon-bell marked this conversation as resolved.

Code reviews and Programmer’s Ego

Remember:
* Code review means someone’s looking over your work
* You might have some attachment to it
* Criticisms: sometimes hard not to take personally
* Acknowledge a criticism and move on
* Acknowledgment doesn’'t imply that the author agrees with the content of the criticism
* The review Is not about you, the goal is to improve code

Module 14.3: Continuous Deployment

Continuous Delivery

“Faster is safer”. Key values of continuous delivery
» Release frequently, in small batches
* Maintain key performance indicators to evaluate the impact of updates
* Phase roll-outs
» Evaluate business impact of new features

17 The final quality frontier: testing and
D ' = ' .
S monitoring in production
B AN
2
D
-
— == —
A
OG,:: oﬂ&, 0{‘5}# {G% %/;; ng? e (c;".l ‘E]
- © o 4 %, . @ %, 'y
0 G % ‘s %, R % S
’ 2 Sy, 2% Y % 9%
o © . Y 2

Staging environments

Enabling Continuous Delivery

As software gets more complex with more dependencies, it's impossible to simulate
the whole when testing

ldea: Deploy to a complete production-like environment, but don't have all use it

Examples:
» “Eat your own dogfood”
» Beta/Alpha testers

Lower risk if a problem occurs in staging than in production

Test-Stage-Production

Continuous Delivery in Action

Developer _
Environments Beta/Dogfooding User Requests

Staging Environment Production Environment

Testing
Environment

Revisions are “promoted” towards production

—

Q/A takes place in each stage (including production!)

A/B Deployments with Canaries

Mitigating risk in continuous delivery

Old Version
Application Database
WISt Lsers Server SErver
[5554) '

Some Users
_ Server Server Server
(2]
Mew Version
Monitor both:

But minimize impact of problems in new version

Deployment Philosophy: Instagram

“Faster I1s safer”

“If stuff blows up it affects a very small
percentage of people”

Instagram cofounder and CTO Mike Krieger

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-enqgineering-behind-instagram

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

Operations Responsibility

DevOps in a slide

Once we deploy, someone has to monitor, make sure it's running OK, no bugs, etc
Assume 3 environments: Test, Staging, Production

Whose job is it?

Developers Operators
Watertfall Test Staging Production
Agile Test Staging Production
DevOps = Test Staging Production Production

Release Pipelines

How quickly is my change deployed?
* Even if you are deploying every day, you still have some latency
* A new feature | develop today won't be released today
* But, a new feature | develop today can begin the release pipeline today (minimizes risk)

» Release Engineer: gatekeeper who decides when code ready to go out, oversees
deployment process

Deployment Example: Facebook.com

Pre-2016

Developers working in their own branch

-m
-m "
-

When feature is ready, push as 1 change to master branch

% |

master branch E 3 days 4 days All changes that survived stabilizing
Weekly i

All changes from week

that are ready for release release branch

4------
<------
4------

4---

d t Your change doesn’t go out .
Proauction unless you're there that day at 3x Dally «ywnen in doubt back out’
that time to support it!

Deployment Example

Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

"Our main goal was to make sure that the
new system made people's experience
better — or at least, didn't make it worse.
After a year of planning and development,
over the course of three days we enabled
100% of our production web servers to
run code deployed directly from master’

“‘Rapid release at massive scale” https://fengineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Deployment Example

Post-2016: Truly continuous releases from master branch

100% production Push-blocking alerts l

Push-blocking tasks
Crashbot for WWW

Emergency button

C2

f K e ey
2% production Push-blocking alerts
Push-blocking tasks

Emergency button

R A

Ct

employees

& Y & F N & & 4 'y F
M ETTE]

 Sandoastl ftestputgmatan | | | [| | [L LL L L PE L T e

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Monitoring helps gather insights

The last step In continuous deployment: track metrics

Hardware
» \oltages, temperatures, fan speeds, component health

OS

 Memory usage, swap usage, disk space, CPU load

Middleware
 Memory, thread/db connection pools, connections, response time

Applications

* Business transactions, conversion rate, status of 3rd party components

Monitoring services aggregate system status

*icinGA

O\ Search .. Q SeRrC: ¥
%
:22 Dashboard & o R a@""&
& P> 65(3: ‘,o*" & P {ac’
O Problems ~ Q‘?} & @ & &2 S L & L2 !&.;}
c® \),:'& ol \ \‘z’+ *\\OQ’ © z,*c’ % .&e .;00 {1‘0 X -QQ'* %
Host Problems OQ\) OQ\) in@ S‘-‘}' &‘;k &# q‘i'F & - ' QQ Q°$ Q{"G G\& c}é ;,}& ‘,ﬁ‘? ‘;F &e& \},,ﬁ*
Service Problems esxio1
Service Grid esxioz (@ @ ®))
Current Downtimes esxi03
esxio4
M Overview osxiOE
D History esxi06
esxi07
& Documentation ibhi . .
& System nagios 08 00 000 = o

#~ Configuration

& jon

slurmctri-dev

squid
VM1

webapps

Monitoring services take automated actions

ﬂJICIﬂGA

| Q Search... A nagios
Q Search ... UP _th
. b Slurm Nodes on nagios Sent to jon sihes £01-1 127.0.0.1
=2z Dashboard 2022-02-18 % vl Gk 55 i
08:49:05 OK - nodes unreachable, reachable 0K |
‘ Service: Slurm Nodes
© Problems OK ‘ N | or 1m 52s
Slurm Nodes on nagios Sent to icingaadmin
RREE A . hable, 332 habl
- . o - nodes unreachable, reachable
Event Detalls
S Hist . Slurm Nodes on nagios Sent to jon
D Histor 22 : e
y S WARNING - 7 nodes unreachable, 326 reachable Type Notification
Event Grid Start time 2022-02-18 08:42:05
Sy Slurm Nodes on nagios Sent teclcingaadmin | e pinia 2022-02-18 08:42:05
Event Overview bl % WARNING - 7 nodes unreachable, 326 reachable
Reason Normal notification
Notifications
CRITICAL ; s :
Slurm Nodes on nagios Sent to icingaadmin State
Timeline iases ' CRITICAL - 65 clg hable, 161 habl .CRITICAL
08:42:05 e noges unreaclha e, reacla e Escalated NO
& Documentation 2%?;:)(_::*:-3 Slurm Nodes on nagios Sent to jon Contacts notified 2
08:42:05 CRITICAL - 65 nodes unreachable, 161 reachable Output

£ System CRITICAL - 65 nodes unreachable, 161 reachabl

Slurm Nodes on nagios Sent to icingaadmin

Pe - :
#~ Configuration WARNING - 12 nodes unreachable, 205 reachable

2 jon : '
& Slurm Nodes on nagios Sent to jon

WARNING - 12 nodes unreachable, 205 reachable

st ns Slurm Nodes on nagios Sent to icingaadmin

CRITICAL - 204 nodes unreachable, 145 reachable

2022-02-18
08:34:07

Monitoring services take automated actions

Automatically detecting irregular behavior at Netflix

SPS

PROD:US-EAST-1

o &

Z == Log

PROD:US-EAST-1

Legend: M Experiment Il Control

o & W @ =8 Log

SPS Server Successes (License Requests)
5.0 -
. -
4.0- |
= ——
= -
3.0 4
2.0- =
1.0~
0.0 I | I ! I ! | |
10:27 10:30 10:33 10:36 10:39 10:42 10:45 10:48
MONITORING!

20.0 +

15.0+

10.0 4

5.0+

0.0-

I
10: 27

SPS Client Successes (Startplays)

P_I—I_\—

— I I
10: 30 10:33 10: 36

f

I
10: 39

| !
10: 42 10: 45 10: 48

https://www.youtube.com/watch?v=gyzymLIj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

Usability testing in continuous development

A/B Testing

» Ways to test new features for usability, popularity, performance without a focus group
» Show 50% of your site visitors version A, 50% version B, collect metrics on each, decide

which Is better
Piie E . 23%
Eggi:i;i:’icgrﬂ conversion

Variation A

et E » 11%

see variation B o
Variation B

Usability testing in continuous development

A/B Testing: PlanOut from Facebook (“N=10° user study”)

Experiment to:

Choose between multiple options

https://github.com/facebook/planout https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Usability testing in continuous development

A/B Testing: PlanOut from Facebook (“N=10° user study”)

Experiment evaluation

EXxposures

% change from control to test

oL
Confidence:

Metrics

https://github.com/facebook/planout https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Beware of Metrics

McNamara Fallacy
* Measure whatever can be easily measured
» Disregard that which cannot be measured easily

* Presume that which cannot be measured easily is not
important

* Presume that which cannot be measured easily does
not exist

Case study of a failed deployment
Knightmare: A DevOps

Cautionary Tale

[was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.
Since that conference I have been asked by several people to share the story through my blog.
This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

This is the story of how a company with nearly $400 million in assets went bankrupt in 45-

minutes because of a failed deployment. “In the week before go-live, a Knight engineer manually
deployed the new RLP code in SMARS to its 8 servers.
However, he made a mistake and did not copy the new
code to one of the servers. Knight did not have a second
engineer review the deployment, and neither was there an
automated system to alert anyone to the discrepancy. °

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?

Use capture/replay testing instead of driving market conditions in a test
Avoid including “test” code in production deployments

Automate deployments

Define and monitor risk-based KPIs

Create checklists for responding to incidents

Review

By now, you should be able to...
» Describe how continuous integration helps to catch errors sooner in the software lifecycle
» Describe the benefits of a culture of code review

» Describe strategies for performing quality-assurance on software as and after it is
delivered

	CS 4530 Software Engineering

Module 14: Continuous Development Processes
	Learning objectives for this lesson
	CD/CI improves code quality and dev velocity
	
Module 14.1: Continuous Integration
	Agile values fast quality feedback loops
	Continuous Integration automates testing
	Continuous Integration
	CI is a software pipeline
	CI in practice
	Attributes of effective CI processes
	CI In Practice: Autograder
	Example CI Pipeline - TravisCI
	How do we apply continuous integration?
	CI Pipelines automate performance testing
	CI Pipelines automate benchmarking
	CI in practice
	
Module 14.2: Code Review
	Code review is an important step of CD
	Why should we perform code review?
	Many stakeholders can benefit from code review
	Code reviews have many benefits
	Code reviews Descend from Code Inspection
	Code review should be a formal process
	Code review checklist
	Code review: How they do it at Google
	Self-review is no substitute for peer review
	Code review: example on pull request
	Code reviews and Programmer’s Ego
	Module 14.3: Continuous Deployment
	Continuous Delivery
	Staging environments
	Test-Stage-Production
	A/B Deployments with Canaries
	Deployment Philosophy: Instagram
	Operations Responsibility
	Release Pipelines
	Deployment Example: Facebook.com
	Deployment Example
	Deployment Example
	Monitoring helps gather insights
	Monitoring services aggregate system status
	Monitoring services take automated actions
	Monitoring services take automated actions
	Usability testing in continuous development
	Usability testing in continuous development
	Usability testing in continuous development
	Beware of Metrics
	Case study of a failed deployment
	What could Knight capital have done better?
	Review

